题目内容

20.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.

分析 (1)根据垂直得出∠CDB=∠EFB=90°,根据平行线的判定得出即可;
(2)根据平行线的性质得出∠2=∠BCD,求出∠1=∠BCD,根据平行线的判定得出DG∥BC,根据平行线的性质得出即可.

解答 (1)证明:∵CD⊥AB,EF⊥AB,
∴∠CDB=∠EFB=90°,
∴CD∥EF;

(2)解:∵CD∥EF,
∴∠2=∠BCD,
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC,
∴∠3=∠ACB=60°.

点评 本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网