题目内容
3.(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为3,OP=1,求BC的长.
分析 (1)由垂直定义得∠A+∠APO=90°,根据等腰三角形的性质由CP=CB得∠CBP=∠CPB,根据对顶角相等得∠CPB=∠APO,所以∠APO=∠CBP,而∠A=∠OBA,所以∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,然后根据切线的判定定理得到BC是⊙O的切线;
(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到32+x2=(x+1)2,然后解方程即可.
解答
(1)证明:连接OB,如图,
∵OP⊥OA,
∴∠AOP=90°,
∴∠A+∠APO=90°,
∵CP=CB,
∴∠CBP=∠CPB,
而∠CPB=∠APO,
∴∠APO=∠CBP,
∵OA=OB,
∴∠A=∠OBA,
∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,
∴OB⊥BC,
∴BC是⊙O的切线;
(2)解:设BC=x,则PC=x,
在Rt△OBC中,OB=3,OC=CP+OP=x+1,
∵OB2+BC2=OC2,
∴32+x2=(x+1)2,
解得x=4,
即BC的长为4.
点评 本题考查了切线的判定定理以及勾股定理,正确应用勾股定理求出BC的长是解题关键.
练习册系列答案
相关题目
8.
如图,直线AB∥CD,直线EF分别于AB,CD交于点E,F,FP⊥EF于点F,且与∠BEF的平分线交于点P,若∠1=20°,则∠2的度数是( )
| A. | 35° | B. | 30° | C. | 25° | D. | 20° |