题目内容

3.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为3,OP=1,求BC的长.

分析 (1)由垂直定义得∠A+∠APO=90°,根据等腰三角形的性质由CP=CB得∠CBP=∠CPB,根据对顶角相等得∠CPB=∠APO,所以∠APO=∠CBP,而∠A=∠OBA,所以∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,然后根据切线的判定定理得到BC是⊙O的切线;
(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到32+x2=(x+1)2,然后解方程即可.

解答 (1)证明:连接OB,如图,
∵OP⊥OA,
∴∠AOP=90°,
∴∠A+∠APO=90°,
∵CP=CB,
∴∠CBP=∠CPB,
而∠CPB=∠APO,
∴∠APO=∠CBP,
∵OA=OB,
∴∠A=∠OBA,
∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,
∴OB⊥BC,
∴BC是⊙O的切线;

(2)解:设BC=x,则PC=x,
在Rt△OBC中,OB=3,OC=CP+OP=x+1,
∵OB2+BC2=OC2
∴32+x2=(x+1)2
解得x=4,
即BC的长为4.

点评 本题考查了切线的判定定理以及勾股定理,正确应用勾股定理求出BC的长是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网