题目内容
14.(1)求证:△AFD≌△CEB;
(2)若∠CBE=∠BAC,四边形ABCD是怎样的四边形?证明你的结论.
分析 (1)求出AF=CE,再利用“边角边”证明即可;
(2)根据全等三角形对应边相等可得AD=BC,全等三角形对应角相等可得∠BCE=∠DAF,再根据内错角相等,两直线平行证明AD∥BC,然后判断出四边形ABCD是平行四边形,求出∠ABC=90°,最后根据有一个角是直角的平行四边形是矩形证明.
解答 证明:(1)∵BE⊥AC,DF⊥AC,
∴∠AFD=∠CEB=90°.
∵AE=FC,
∴AE+EF=FC+EF,
∴AF=CE,
又∵BE=DF,
∴△AFD≌△CEB;
(2)四边形ABCD为矩形.
∵△AFD≌△CEB,
∴AD=BC,∠BCE=∠DAF.
∴AD∥BC,
∴四边形ABCD为平行四边形,
∵∠CBE=∠BAC,
又∵∠CBE+∠ACB=90°,
∴∠BAC+∠ACB=90°,
∴∠ABC=90°,
∴四边形ABCD为矩形.
点评 本题考查了全等三角形的判定与性质,矩形的判定,熟练掌握三角形全等的判定方法并准确识图是解题的关键.
练习册系列答案
相关题目
5.-2的倒数的绝对值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2$\frac{1}{2}$ | D. | 2 |
4.方程(x-2)(x+1)=x-2的解是( )
| A. | x=0 | B. | x=2 | C. | x=2或x=-1 | D. | x=2或x=0 |