题目内容

11.在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.
(1)作出符合本题的几何图形;
(2)求证:BE∥DF.

分析 (1)根据题意画出图形即可;
(2)根据四边形内角和为360°可得∠ADC+∠ABC=180°,然后再根据角平分线定义可得∠ADF=∠FDE=$\frac{1}{2}∠$ADC,∠EBF=∠EBC=$\frac{1}{2}∠$ABC,再证明∠DFA=∠EBF可得结论.

解答 (1)解:如图所示:

(2)证明:∵四边形ABCD中,∠A=∠C=90°,
∴∠ADC+∠ABC=180°,
∵BE平分∠ABC,DF平分∠CDA,
∴∠ADF=∠FDE=$\frac{1}{2}∠$ADC,∠EBF=∠EBC=$\frac{1}{2}∠$ABC,
∴∠FBE+∠FDE=90°,
∵∠A=90°,
∴∠AFD+∠ADF=90°,
∴∠AFD+∠EDF=90°,
∴∠DFA=∠EBF,
∴DF∥EB.

点评 此题主要考查了平行线的判定,以及四边形内角和,关键是掌握同位角相等,两直线平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网