题目内容

计算:
(1)1
4
17
×(2
2
3
-
3
4
)-
6
6
7
-3
9
13
3
3
7
-2
2
11
×
13
33
+
17+
11
12
1-
4
21

(2)24×(
1
2×3
+
1
4×5
+…+
1
24×25
)-(
1
12
+
1
12+22
+
1
12+22+32
+…+
1
12+22+…+122
).
考点:有理数无理数的概念与运算
专题:计算题
分析:(1)只需将带分数化成假分数后,运用有理数的运算法则就可解决问题.
(2))由12+22+32+…+n2=
1
6
n(n+1)(2n+1)可得
1
12+22+…+n2
=
6
n(n+1)(2n+1)
=
24
2n(2n+1)(2n+2)
=12[
1
2n(2n+1)
-
1
(2n+1)(2n+2)
],然后运用裂项相消法就可解决问题.
解答:解:(1)原式=
21
17
×
23
12
-
48
7
-
48
13
24
7
-
24
11
×
13
33
+
17+
11
12
17
21

=
7×23
17×4
-2×
1
7
-
1
13
1
7
-
1
11
×
13
33
+(17+
11
12
)×
21
17

=
7×23
17×4
-2×
6
91
4
77
×
13
33
+21+
11×7
17×4

=
34×7
17×4
-2×
33
26
×
13
33
+21
=3.5-1+21
=23.5.

(2)∵12+22+32+…+n2=
1
6
n(n+1)(2n+1),
1
12+22+…+n2
=
6
n(n+1)(2n+1)
=
24
2n(2n+1)(2n+2)

=12[
1
2n(2n+1)
-
1
(2n+1)(2n+2)
]
∴原式=24×(
1
2×3
+
1
4×5
+…+
1
24×25
)-12×(
1
2×3
-
1
3×4
+
1
4×5
-
1
5×6
+…+
1
24×25
-
1
25×26

=24×(
1
2×3
+
1
4×5
+…+
1
24×25
)-12×(
1
2×3
+
1
4×5
+…+
1
24×25
)+12×(
1
3×4
+
1
5×6
+…+
1
25×26

=12×(
1
2×3
+
1
4×5
+…+
1
24×25
)+12×(
1
3×4
+
1
5×6
+…+
1
25×26

=12×(
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+…+
1
24×25
+
1
25×26

=12×(
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
+…+
1
24
-
1
25
+
1
25
-
1
26

=12×(
1
2
-
1
26

=12×
6
13

=
72
13
点评:本题主要考查了有理数的运算,运用公式12+22+32+…+n2=
1
6
n(n+1)(2n+1),并采用裂项相消法是解决第(2)小题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网