题目内容
如图,在平面直角坐标系中,直线
与抛物线
交于A、B两点,点A在x轴上,点B的横坐标为-8.
![]()
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作如图所示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,求出对应的点P的坐标.
(1)(2)①15 ② 【解析】试题分析:(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)①利用直线解析式和抛物线解析式表示出PD,再利用同角的余角相等求出∠DPE=∠BAO,根据直线k值求出∠BAO的正弦和余弦值,然后表示出PE、DE,再根据三角形的周长公式列式整理即可得解,再根据二次函数的最值问题解答;②分(i)点G在y轴上时,过点P作PH⊥x轴于H,...
练习册系列答案
相关题目
某学校有1500名学生参加首届“我爱我们的课堂”为主题的图片制作比赛,赛后随机抽取部分参赛学生的成绩进行整理并制作成图表如下:
频率分布统计表 | 频率分布直方图 | ||
分数段 | 频数 | 频率 |
|
60≤x<70 | 40 | 0.40 | |
70≤x<80 | 35 | b | |
80≤x<90 | a | 0.15 | |
90≤x<100 | 10 | 0.10 | |
请根据上述信息,解答下列问题:
(1)表中:a= ,b= ;
(2)请补全频数分布直方图;
(3)如果将比赛成绩80分以上(含80分)定为优秀,那么优秀率是多少?并且估算该校参赛学生获得优秀的人数。
(1)a=15,b=0.35;(2)如下图;(3)25℅,375 【解析】 试题分析:(1)根据第一组的频数与频率可求出总的调查人数,然后根据第二组的频数和第三组的频率即可求出a和b的值; (2)根据(1)中求出的a值,可补全频数分布直方图; (3)优秀率=第三组和第四组的频率之和×100%;用总人数乘以优秀率,计算即可得解. (1)总的调查人数=40÷0.40=10...