题目内容

14.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于(  )
A.1B.2C.4D.8

分析 作PE⊥OA于E,如图,先利用平行线的性质得∠ECP=∠AOB=30°,则PE=$\frac{1}{2}$PC=2,然后根据角平分线的性质得到PD的长.

解答 解:作PE⊥OA于E,如图,
∵CP∥OB,
∴∠ECP=∠AOB=30°,
在Rt△EPC中,PE=$\frac{1}{2}$PC=$\frac{1}{2}$×4=2,
∵P是∠AOB平分线上一点,PE⊥OA,PD⊥OB,
∴PD=PE=2.
故选B.

点评 本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.解决本题的关键是把求P点到OB的距离转化为点P到OA的距离.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网