题目内容
19.分析 由于∠ACB=90°,DE⊥AC可判断DE∥BC,根据平行线的性质得∠ADE=∠B,∠BCD=∠CDE,在Rt△ADE中,利用正切的定义可计算出AE=8,则利用勾股定理可计算出AD=10,接着运用平行线分线段成比例定理计算出CE=16,然后在Rt△CDE中,根据正切的定义得到tan∠CDE=$\frac{CE}{DE}$=$\frac{8}{3}$,于是得到tan∠BCD=$\frac{8}{3}$.
解答 解:∵∠ACB=90°,DE⊥AC,
∴DE∥BC,
∴∠ADE=∠B,∠BCD=∠CDE,
在Rt△ADE中,∵tan∠ADE=$\frac{AE}{DE}$=$\frac{4}{3}$,
∴AE=$\frac{4}{3}$×6=8,
∴AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=10,
∵DE∥BC,
∴$\frac{AE}{CE}$=$\frac{AD}{BD}$,即$\frac{8}{CE}$=$\frac{10}{20}$,解得CE=16,
在Rt△CDE中,tan∠CDE=$\frac{CE}{DE}$=$\frac{16}{6}$=$\frac{8}{3}$,
∴tan∠BCD=$\frac{8}{3}$.
故答案为$\frac{8}{3}$.
点评 本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了平行线分线段成比例定理.
练习册系列答案
相关题目
7.已知矩形ABCD中,AB=2BC,在CD上取一点E,使得∠EAB=30°,AE=AB,则∠EBC的度数为( )
| A. | 15° | B. | 30° | C. | 45° | D. | 60° |
4.下列运算中,结果正确的是( )
| A. | x3+x2=x5 | B. | (x2)3=x6 | C. | x3•x2=x6 | D. | (x+y)2=x2+y2 |