题目内容
求二次函数的顶点坐标,并说出此函数的两条性质.
某地准备对一段长120 m的河道进行清淤疏通.若甲工程队先用 4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道y m,则的值为_______.
如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.
(1)求证:AB是⊙O的切线.
(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.
(3)在(2)的条件下,设⊙O的半径为3,求AB的长.
【答案】(1)证明见解析(2) (3)
【解析】试题分析:(1)过O作OF⊥AB于F,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD=;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" ,BF=z,列二元一次方程组即可解决问题.
试题解析:(1)证明:作OF⊥AB于F
∵AO是∠BAC的角平分线,∠ACB=90º
∴OC=OF
∴AB是⊙O的切线
(2)连接CE
∵AO是∠BAC的角平分线,
∴∠CAE=∠CAD
∵∠ACE所对的弧与∠CDE所对的弧是同弧
∴∠ACE=∠CDE
∴△ACE∽△ADC
∴= tanD=
(3)先在△ACO中,设AE=x,
由勾股定理得
(x+3)²="(2x)" ²+3² ,解得x="2,"
∵∠BFO=90°=∠ACO
易证Rt△B0F∽Rt△BAC
得,
设BO=y BF=z
即4z=9+3y,4y=12+3z
解得z=y=
∴AB=+4=
考点:圆的综合题.
【题型】解答题【结束】22
已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
如图,已知直线AB∥CD,∠C=100°,∠A=30°,则∠E的度数为( )
A. 30° B. 60° C. 70° D. 100°
为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.
(1)用含有x的代数式表示BC的长,BC= ;
(2)求y与x的函数关系式,写出自变量x的取值范围;
(3)当x为何值时,y有最大值?最大值为多少?
抛物线的对称轴是__________.
三角形的内心是三角形内切圆的圆心,它也是三角形( )
A. 三条高线的交点 B. 三边垂直平分线的交点
C. 三边中线的交点 D. 三条内角平分线的交点
比较大小:____
计算:=_____.