题目内容
如图,已知直线AB∥CD,∠C=100°,∠A=30°,则∠E的度数为( )
A. 30° B. 60° C. 70° D. 100°
观察下列关于自然数的等式:
a1:32-12=8×1;
a2:52-32=8×2;
a3:72-52=8×3;……
根据上述规律解决下列问题:
(1)写出第a4个等式:___________;
(2)写出你猜想的第an个等式(用含n的式子表示),并验证其正确性;
(3)对于正整数k,若ak,ak+1,ak+2为△ABC的三边,求k的取值范围.
已知a,b是方程x2﹣6x+4=0的两实数根,且a≠b,则的值是( )
A. 7 B. ﹣7 C. 11 D. ﹣11
先化解,再求值:,其中a=-1.
如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为( )
A. 2 B. 3 C. D.
如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).
(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.
求二次函数的顶点坐标,并说出此函数的两条性质.
通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,
连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴点F、D、G共线
根据 ,易证△AFG≌ ,进而得EF=BE+DF.
(2)联想拓展
如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的数量关系,并写出推理过程.
下列二次根式中,最简二次根式是( )
A. B. C. D.