ÌâÄ¿ÄÚÈÝ

16£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOABCµÄ¶¥µãOÎª×ø±êÔ­µã£¬¶¥µãA¡¢CµÄ×ø±ê·Ö±ðΪ£¨0£¬-$\sqrt{2}$£©¡¢£¨2$\sqrt{2}$£¬0£©£¬½«¾ØÐÎOABCÈÆµãO˳ʱÕëÐýת45¡ãµÃµ½¾ØÐÎOA¡äB¡äC¡ä£¬±ßA¡äB¡äÓëyÖá½»ÓÚµãD£¬¾­¹ý×ø±êÔ­µãµÄÅ×ÎïÏßy=ax2+bxͬʱ¾­¹ýµãA¡ä¡¢C¡ä£®
£¨1£©ÇóÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý±í´ïʽ£»
£¨2£©Ð´³öµãB¡äµÄ×ø±ê£»
£¨3£©µãPÊDZßOC¡äÉÏÒ»µã£¬¹ýµãP×÷PQ¡ÍOC¡ä£¬½»Å×ÎïÏßλÓÚyÖáÓҲಿ·ÖÓÚµãQ£¬Á¬½ÓOQ¡¢DQ£¬Éè¡÷ODQµÄÃæ»ýΪS£¬µ±Ö±ÏßPQ½«¾ØÐÎOA¡äB¡äC¡äµÄÃæ»ý·ÖΪ1£º3µÄÁ½²¿·Öʱ£¬ÇóSµÄÖµ£»
£¨4£©±£³Ö¾ØÐÎOA¡äB¡äC¡ä²»¶¯£¬½«¾ØÐÎOABCÑØÉäÏßOC'·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÆ½ÒÆ£¬ÉèÆ½ÒÆÊ±¼äΪtÃ루t£¾0£©£®µ±¾ØÐÎOABCÓë¾ØÐÎOA¡äB¡äC¡äÖØµþ²¿·ÖͼÐÎΪÖá¶Ô³Æ¶à±ßÐÎʱ£¬Ö±½Óд³ötµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öA¡¢CÁ½µã×ø±ê£¬°ÑA¡¢CÁ½µã×ø±ê´úÈëy=ax2+bx½â·½³Ì×é¼´¿É£®
£¨2£©Èçͼ1ÖУ¬Á¬½ÓA¡äC¡ä£¬OB¡ä½»ÓÚµãE£®Çó³öµãE×ø±ê£¬¸ù¾ÝÖеã×ø±ê¹«Ê½¼´¿É½â¾öÎÊÌ⣮
£¨3£©·ÖÁ½ÖÖÇéÐ΢ٵ±OP£ºPC¡ä=1£º3ʱ£¬P£¨$\frac{1}{2}$£¬-$\frac{1}{2}$£©£¬Çó³öÖ±ÏßPQµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãQ×ø±ê¼´¿É£®¢Úµ±OP¡ä£ºP¡äC¡ä=3£º1ʱ£¬P¡ä£¨$\frac{3}{2}$£¬-$\frac{3}{2}$£©£¬·½·¨ÀàËÆ£®
£¨4£©Èçͼ3ÖУ¬µ±µãAÔÚA¡äB¡äÉÏʱ£¬Öصþ²¿·ÖÊÇËıßÐÎAMON£¬ÊÇÖá¶Ô³ÆÍ¼ÐΣ¬ÓÉOM=AMʱ£¬´Ëʱ$\sqrt{2}$t=$\sqrt{2}$-$\sqrt{2}$t£¬½âµÃt=2-$\sqrt{2}$£¬Èçͼ4ÖУ¬µ±µãBÆ½ÒÆµ½yÖáÉÏʱ£¬Öصþ²¿·ÖÊÇËıßÐÎOA¡äMBÊÇÖá¶Ô³ÆÍ¼ÐΣ¬Èçͼ5ÖУ¬µ±µãBÆ½ÒÆµ½A¡äB¡äÉÏʱ£¬Öصþ²¿·ÖÊÇ¡÷A¡äBMÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÊÇÖá¶Ô³ÆÍ¼ÐΣ¬´ËʱÓÉOM=BM£¬µÃµ½$\sqrt{2}$£¨t-2$\sqrt{2}$£©=$\sqrt{2}$-£¨t-2$\sqrt{2}$£©£¬½âµÃt=2+$\sqrt{2}$£¬Óɴ˼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬

ÓÉÌâÒâA¡ä£¨-1£¬-1£©£¬C¡ä£¨2£¬-2£©£¬°ÑA¡ä£¨-1£¬-1£©£¬C¡ä£¨2£¬-2£©´úÈëy=ax2+bxµÃ$\left\{\begin{array}{l}{a-b=-1}\\{4a+2b=-2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{2}{3}}\\{b=\frac{1}{3}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{2}{3}$x2+$\frac{1}{3}$x£®

£¨2£©Èçͼ1ÖУ¬Á¬½ÓA¡äC¡ä£¬OB¡ä½»ÓÚµãE£®
¡ßËıßÐÎOA¡äB¡äC¡äÊǾØÐΣ¬
¡àA¡äE=EC¡ä£¬OE=EB¡ä£¬
¡ßA¡ä£¨-1£¬-1£©£¬C¡ä£¨2£¬-2£©£¬
¡àE£¨$\frac{1}{2}$£¬-$\frac{3}{2}$£©£¬
¡àB¡ä£¨1£¬-3£©£®

£¨3£©Èçͼ2ÖУ¬¡ßÖ±ÏßPQ½«¾ØÐÎOA¡äB¡äC¡äµÄÃæ»ý·ÖΪ1£º3µÄÁ½²¿·Ö£¬
¡àOP£ºPC¡ä=1£º3»òOP¡ä£ºP¡äC¡ä=3£º1£®

¢Ùµ±OP£ºPC¡ä=1£º3ʱ£¬P£¨$\frac{1}{2}$£¬-$\frac{1}{2}$£©£¬
Ö±ÏßPQµÄ½âÎöʽΪy=x-1£¬
ÓÉ$\left\{\begin{array}{l}{y=x-1}\\{y=-\frac{2}{3}{x}^{2}+\frac{1}{3}x}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{-1+\sqrt{7}}{2}}\\{y=\frac{-3+\sqrt{7}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{-1-\sqrt{7}}{2}}\\{y=\frac{-3-\sqrt{7}}{2}}\end{array}\right.$£¬
¡ßµãQÔÚµÚËÄÏóÏÞ£¬
¡àQ£¨$\frac{-1+\sqrt{7}}{2}$£¬$\frac{-3+\sqrt{7}}{2}$£©£®
¡ßD£¨0£¬-2£©£¬
¡àS¡÷ODQ=$\frac{1}{2}$¡Á2¡Á$\frac{-1+\sqrt{7}}{2}$=$\frac{\sqrt{7}-1}{2}$£®
¢Úµ±OP¡ä£ºP¡äC¡ä=3£º1ʱ£¬P¡ä£¨$\frac{3}{2}$£¬-$\frac{3}{2}$£©£¬
¡àÖ±ÏßP¡äQ¡äµÄ½âÎöʽΪy=x-3£¬
ÓÉ$\left\{\begin{array}{l}{y=x-3}\\{y=-\frac{2}{3}{x}^{2}+\frac{1}{3}x}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=\frac{-1+\sqrt{19}}{2}}\\{y=\frac{-7+\sqrt{19}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{-1-\sqrt{19}}{2}}\\{y=\frac{-7-\sqrt{19}}{2}}\end{array}\right.$£¬
¡àQ¡ä£¨$\frac{-1+\sqrt{19}}{2}$£¬$\frac{-7+\sqrt{19}}{2}$£©£¬
¡àS¡÷ODQ¡ä=$\frac{1}{2}$¡Á2¡Á$\frac{-1+\sqrt{19}}{2}$=$\frac{\sqrt{19}-1}{2}$£®

£¨4£©Èçͼ3ÖУ¬µ±µãAÆ½ÒÆµ½ÔÚA¡äB¡äÉÏʱ£¬Öصþ²¿·ÖÊÇËıßÐÎAMON£¬ÊÇÖá¶Ô³ÆÍ¼ÐΣ¬ÓÉOM=AMʱ£¬´Ëʱ$\sqrt{2}$t=$\sqrt{2}$-$\sqrt{2}$t£¬½âµÃt=2-$\sqrt{2}$£¬
Èçͼ4ÖУ¬µ±µãBÆ½ÒÆµ½yÖáÉÏʱ£¬Öصþ²¿·ÖÊÇËıßÐÎOA¡äMBÊÇÖá¶Ô³ÆÍ¼ÐΣ¬´Ëʱt=2$\sqrt{2}$£®

Èçͼ5ÖУ¬µ±µãBÆ½ÒÆµ½A¡äB¡äÉÏʱ£¬Öصþ²¿·ÖÊÇ¡÷A¡äBMÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÊÇÖá¶Ô³ÆÍ¼ÐΣ¬
´ËʱÓÉOM=BM£¬µÃµ½$\sqrt{2}$£¨t-2$\sqrt{2}$£©=$\sqrt{2}$-£¨t-2$\sqrt{2}$£©£¬½âµÃt=2+$\sqrt{2}$£¬

×ÛÉÏËùÊö£¬¾ØÐÎOABCÓë¾ØÐÎOA¡äB¡äC¡äÖØµþ²¿·ÖͼÐÎΪÖá¶Ô³Æ¶à±ßÐÎʱ£¬t=2-$\sqrt{2}$»ò2$\sqrt{2}$»ò2+$\sqrt{2}$¡Üt£¼2$\sqrt{2}$+1£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÃæ»ý¡¢Öеã×ø±ê¹«Ê½¡¢Æ½ÒƱ任µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»á·ÖÀàÌÖÂÛ£¬Ñ§»á»­ºÃͼÏó£¬ÀûÓÃͼÏó½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø