题目内容

16.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}$-1;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\sqrt{3}$-$\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\sqrt{4}$-$\sqrt{3}$;…
(1)利用你观察到的规律,化简:①$\frac{1}{\sqrt{23}+\sqrt{22}}$=$\sqrt{23}$-$\sqrt{22}$;②$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$;
(2)计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+2}$+…+$\frac{1}{\sqrt{15}+4}$.

分析 (1)根据已知数据变化规律进而得出答案;
(2)利用数据变化规律直接将原式变形进而求出答案.

解答 解:(1)①$\frac{1}{\sqrt{23}+\sqrt{22}}$=$\sqrt{23}$-$\sqrt{22}$;
②$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$;
故答案为:$\sqrt{23}$-$\sqrt{22}$;$\sqrt{n}$-$\sqrt{n-1}$;

(2)$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+2}$+…+$\frac{1}{\sqrt{15}+4}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+2-$\sqrt{3}$+…+4-$\sqrt{15}$
=-1+4
=3.

点评 此题主要考查了分母有理化,正确化简各二次根式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网