题目内容

5.二次函数y=ax2+bx+c,过点(-2,0)且顶点为(1,3),则其对称轴为x=1,开口向下,与x轴另一交点为(4,0),x=1时,y的最值为3.

分析 由抛物线的顶点坐标可知抛物线的对称轴为x=1,y的最值为3,然后根据根据抛物线的对称性可求得与x轴另一交点为(4,0),根据点(-2,0)且顶点为(1,3)的位置关系可知抛物线的开口方向.

解答 解:∵抛物线的顶点坐标为(1,3),
∴抛物线的对称轴为x=1,当x=1时,y的最值为3.
∵抛物线的对称轴为x=1,
∴点(-2,0)关于x=1的对称点为(4,0).
∴抛物线与x轴另一交点为(4,0).
根据(-2,0)、(1,3)、(4,0)三点的坐标画出抛物线的大致图象可知,抛物线的开口向下.
故答案为:x=1;向下;(4,0);1;3.

点评 本题主要考查的是二次函数的性质,掌握二次函数的图象和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网