题目内容

20.解不等式组:$\left\{\begin{array}{l}{x+3>0}\\{2(x-1)+3≥3x}\end{array}\right.$,把解集在数轴上表示出来,并判断-1,3这两个数是否为该不等式组的解.

分析 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.

解答 解:$\left\{\begin{array}{l}{x+3>0…①}\\{2(x-1)+3≥3x…②}\end{array}\right.$,
解①得x>-3,
解②得x≤1.

故不等式组的解集是-3<x≤1.
-1是不等式的解,3不是不等式组的解.

点评 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网