题目内容

17.如图1,在等腰Rt△ABC中,∠ACB=90°,AC=BC;在等腰Rt△DCE中,∠DCE=90°,CD=CE;点D、E分别在边BC、AC上,连接AD、BE,点N是线段BE的中点,连接CN与AD交于点G.
(1)若CN=6.5,CE=5,求BD的值;
(2)把等腰Rt△DCE绕点C转至如图2位置,点N是线段BE的中点,延长NC交AD于点H,求证:CN⊥AD.
(3)把等腰Rt△DCE绕点C转至如图3位置,点N是线段BE的中点,请问(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.

分析 (1)根据直角三角形的性质得到BE=2CN=13,根据勾股定理得到BC=$\sqrt{B{E}^{2}-C{E}^{2}}$=5,即可得到结论;
(2)如图2,延长CN到F使FN=CN,连接BF,通过证明△CEN≌△BNF,得到CE=BF,∠F=∠ECN,推出∠CBF=∠DCA,证得△ACD≌△BCF,根据全等三角形的性质得到∠DAC=∠BCF,等量代换即可得到结论.
(3)结论不变.证明方法类似.

解答 (1)解:如图1中,

∵∠ACB=90°,点N是线段BE的中点,
∴BE=2CN=13,
∵CE=5,
∴BC=$\sqrt{B{E}^{2}-C{E}^{2}}$=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∵CD=CE=5,
∴BD=BC-CD=12-5=7;
(2)如图2中,延长CN到F使FN=CN,连接BF,

在△CEN与△BFN中,
$\left\{\begin{array}{l}{CN=FN}\\{∠CNE=∠BNF}\\{EN=BN}\end{array}\right.$,
∴△CEN≌△BNF,
∴CE=BF,∠F=∠ECN
∵∠CBF=180°-∠F-∠BCF,∠DCA=360°-∠DCE-∠ACB-∠BCE=180°-∠ECF-∠BCF,
∴∠CBF=∠DCA,
∵CE=CD,
∴BF=CD,
在△ACD与△BCF中,
$\left\{\begin{array}{l}{CD=BF}\\{∠ACD=∠FBC}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△BCF,
∴∠DAC=∠BCF,
∵∠BCF+∠ACH=90°,
∴∠CAH+∠ACH=90°,
∴∠AHC=90°,
∴CN⊥AD.

(3)结论仍然成立.如图3中,

证明:延长CN到F使FN=CN,连接BF,延长AD交CF于H.
在△CEN与△BFN中,
$\left\{\begin{array}{l}{CN=FN}\\{∠CNE=∠BNF}\\{EN=BN}\end{array}\right.$,
∴△CEN≌△BNF,
∴CE=BF,∠F=∠ECN
∵∠CBF=180°-∠F-∠BCF=180°-∠FCE-∠BCF=180°-∠BCE=90°-∠ACE,∠DCA=90°-∠ACE,
∴∠CBF=∠DCA,
∵CE=CD,
∴BF=CD,
在△ACD与△BCF中,
$\left\{\begin{array}{l}{CD=BF}\\{∠ACD=∠FBC}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△BCF,
∴∠DAC=∠BCF,
∵∠BCF+∠ACH=90°,
∴∠CAH+∠ACH=90°,
∴∠AHC=90°,
∴CN⊥AD.

点评 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,三角形的面积公式,正确的作出辅助线是解题的关键,属于中考压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网