ÌâÄ¿ÄÚÈÝ
10£®Ä³Éä»÷Ô˶¯Ô±ÔÚͬһÌõ¼þϽøÐÐÉä»÷£¬½á¹ûÈç±íËùʾ£º| Éä»÷×Ü´ÎÊýn | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
| »÷ÖаÐÐÄ´ÎÊým | 9 | 16 | 41 | 88 | 168 | 429 | 861 |
| »÷ÖаÐÐÄÆµÂÊ $\frac{m}{n}$ | 0.9 | 0.8 | 0.82 | 0.88 | 0.84 | 0.858 | 0.861 |
£¨2£©¸ù¾Ý±í¸ñ£¬»³ö¸ÃÔ˶¯Ô±»÷ÖаÐÐĵįµÂʵÄÕÛÏßͳ¼ÆÍ¼£»
£¨3£©¹Û²ì»³öµÄÕÛÏßͳ¼ÆÍ¼£¬»÷ÖаÐÐĵįµÂʵı仯ÓÐʲô¹æÂÉ£¿
·ÖÎö £¨1£©ÆµÂÊÊÇָÿ¸ö¶ÔÏó³öÏֵĴÎÊýÓë×Ü´ÎÊýµÄ±ÈÖµ£¨»òÕ߰ٷֱȣ©£¬¼´ÆµÂÊ=ƵÊý¡ÂÊý¾Ý×ÜÊý£»
£¨2£©¸ù¾Ý±í¸ñÖÐµÄÆµÂÊ£¬»³ö¸ÃÔ˶¯Ô±»÷ÖаÐÐĵįµÂʵÄÕÛÏßͳ¼ÆÍ¼£»
£¨3£©ÀûÓÃÆµÂʵÄÒâÒ壬¸ù¾ÝƵÂʵÄÕÛÏßͳ¼ÆÍ¼µÄ±ä»¯Ç÷ÊÆ£¬µÃ³ö»÷ÖаÐÐĵįµÂʵĽüËÆÖµ£®
½â´ð ½â£º£¨1£©$\frac{9}{10}$=0.9£¬$\frac{16}{20}$=0.8£¬$\frac{41}{50}$=0.82£¬$\frac{88}{100}$=0.88£¬$\frac{168}{200}$=0.84£¬$\frac{429}{500}$=0.858£¬$\frac{861}{1000}$=0.861£¬
¹Ê´ð°¸Îª£º0.9£¬0.8£¬0.82£¬0.88£¬0.84£¬0.858£¬0.861£»
£¨2£©ÈçͼËùʾ£¬Ô˶¯Ô±»÷ÖаÐÐĵįµÂʵÄÕÛÏßͳ¼ÆÍ¼Îª£º![]()
£¨3£©¸ù¾ÝÕÛÏßͳ¼ÆÍ¼£¬¿ÉµÃ»÷ÖаÐÐĵįµÂʽӽüÓÚ0.86£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÀûÓÃÆµÂʹÀ¼Æ¸ÅÂÊÒÔ¼°ÆµÂÊÇ󷨣¬ÕýÈ·Àí½âƵÂʵÄÒâÒåÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®
Ñ¡ÏîÖÐÕ¹¿ªºóÓëÈçͼËùʾµÄͼÐÎÏàͬµÄÊÇ£¨¡¡¡¡£©
| A£® | B£® | C£® | D£® |
18£®ÏÂÁзÖÊýÖв»ÄÜ»¯³ÉÓÐÏÞСÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{9}{16}$ | B£® | $\frac{3}{8}$ | C£® | $\frac{5}{18}$ | D£® | $\frac{7}{50}$ |
15£®Èô0£¼a£¼b£¬$\sqrt{\frac{a}{b}}$+$\sqrt{\frac{b}{a}}$=$\sqrt{6}$£¬Ôò$\frac{a-b}{a+b}$µÄÖµÊÇ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{3}}{3}$ | B£® | -$\sqrt{3}$ | C£® | -$\frac{\sqrt{6}}{2}$ | D£® | -$\frac{\sqrt{3}}{3}$ |
20£®
Èçͼ£¬AB¡ÎDC£¬ACÓëBD ½»ÓÚµãE£¬EF¡ÎDC½»BCÓÚµãF£¬CE=5£¬CF=4£¬AE=BC£¬Ôò$\frac{DC}{AB}$µÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{2}{3}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{3}{5}$ |