题目内容

5.如图,已知圆柱底面周长为8dm,高为3dm,在圆柱的侧面上,点A和点C相对,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度最小为(  )
A.10B.8C.5D.11

分析 要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.

解答 解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为8dm,圆柱高为3dm,
∴AB=3dm,BC=BC′=4dm,
∴AC2=32+42=25,
∴AC=5dm.
∴这圈金属丝的周长最小为2AC=10dm.
故选A.

点评 本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网