题目内容

先化简,再求值
1
a+1
-
a+3
a2-1
×
a2-2a+1
(a+1)(a+3)
,其中a2+2a-1=0.
分析:原式第二项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,将已知等式变形后代入计算即可求出值.
解答:解:原式=
1
a+1
-
a+3
(a+1)(a-1)
(a-1)2
(a+1)(a+3)

=
1
a+1
-
a-1
(a+1)2

=
a+1-a+1
a2+2a+1

=
2
a2+2a+1

∵a2+2a-1=0,即a2+2a=1,
∴原式=
2
1+1
=1.
点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网