题目内容

20.解方程组:
(1)$\left\{\begin{array}{l}{3x-2y=-1}\\{x+3y=7}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-5y=2}\\{\frac{x+y}{2}-\frac{x-y}{3}=1}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{3x-2y=-1①}\\{x+3y=7②}\end{array}\right.$,
②×3-①得:11y=22,即y=2,
把y=2代入②得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{x-5y=2①}\\{x+5y=6②}\end{array}\right.$,
①+②得:2x=8,即x=4,
把x=4代入①得:y=$\frac{2}{5}$,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=\frac{2}{5}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网