题目内容

7.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为$\frac{6}{5}$.

分析 先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其解即可.

解答 解:∵AB=3,AC=4,BC=5,
∴∠EAF=90°,
∵PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点.
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵$\frac{1}{2}$AP.BC=$\frac{1}{2}$AB.AC,
∴AP.BC=AB.AC.
∵AB=3,AC=4,BC=5,
∴5AP=3×4,
∴AP=$\frac{12}{5}$,
∴AM=$\frac{6}{5}$;
故答案为:$\frac{6}{5}$.

点评 本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网