题目内容
19.分析 作出图形,分两种情况:①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数.
解答
解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,
∵AB∥CD,
∴∠CEO=∠B=40°,
∵∠C=60°,∠COD=90°,
∴∠D=90°-60°=30°,
∴∠DOE=∠CEO-∠D=40°-30°=10°,
∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°;
②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,![]()
∵AB∥CD,
∴∠CEO=∠B=40°,
∵∠C=60°,∠COD=90°,
∴∠D=90°-60°=30°,
∴∠DOE=∠CEO-∠D=40°-30°=10°,
∴旋转角为270°+10°=280°,
综上所述,当旋转角为100°或280°时,边CD恰好与边AB平行.
故答案为:100或280.
点评 本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.
练习册系列答案
相关题目
9.
三个边长分别是3,4,5的正方形按如图所示摆放(正方形的一个顶点与相邻的一个正方形对角线交点重合),则图中阴影部分的面积和为( )
| A. | $\frac{17}{2}$ | B. | $\frac{25}{4}$ | C. | $\frac{41}{4}$ | D. | 7 |
14.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表所示:
(1)若该公司五月份的销售收入为330万元,求甲、乙两种型号的产品分别生产多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过216万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本)
| 甲 | 乙 | |
| 原料成本 | 12 | 8 |
| 销售单价 | 18 | 12 |
| 生产提成 | 1 | 0.6 |
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过216万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本)
4.
小米和小亮玩一种跳棋游戏,如图,游戏板由大小相等的小正方形组成,小米让棋子在游戏板上随意走动,则棋子落在白色区域的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{9}{16}$ |
11.要使分式$\frac{x-1}{x+2}$有意义,则x的取值应满足( )
| A. | x>-2 | B. | x≠1 | C. | x≠-2 | D. | x=1且x≠-2 |