题目内容

19.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE
(1)求证:△ABC∽△CBD;
(2)求证:直线DE是⊙O的切线.

分析 (1)根据AC为⊙O的直径,得出△BCD为Rt△,通过已知条件证明△BCD∽△BAC即可;
(2)连结DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切.

解答 (1)证明:∵AC为⊙O的直径,
∴∠ADC=90°,
∴∠BDC=90°,
又∵∠ACB=90°,
∴∠ACB=∠BDC,
又∵∠B=∠B,
∴△BCD∽△BAC;
(2)连结DO,如图,
∵∠BDC=90°,E为BC的中点,
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD,
∴DE与⊙O相切.

点评 本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了直角三角形斜边上的中线性质和相似三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网