题目内容

10.已知不等式(m-1)x>(m-1)(m-2)的解是不等式||x+3|-|x-3||>3的解集的一部分,求m的取值范围.

分析 先根据不等式||x+3|-|x-3||>3表示的几何意义,得出x<-$\frac{3}{2}$或x>$\frac{3}{2}$,再分两种情况进行讨论:当m-1>0,即m>1时,x>m-2;当m-1<0,即m<1时,x<m-2,分别求得m的取值范围即可.

解答 解:不等式||x+3|-|x-3||>3表示的几何意义为:在数轴上一点到3和-3的距离之差的绝对值大于3,
①当x≤-3或x≥3时,不等式||x+3|-|x-3||>3成立;
②当-3<x≤0时,不等式||x+3|-|x-3||>3化简得:|x+3+x-3|>3,解得-3<x<-$\frac{3}{2}$;
③当0<x<3时,不等式||x+3|-|x-3||>3化简得:|x+3+x-3|>3,解得$\frac{3}{2}$<x<3;
∴x<-$\frac{3}{2}$或x>$\frac{3}{2}$,
当m-1>0,即m>1时,x>m-2,
∴m-2≥$\frac{3}{2}$,
解得m≥$\frac{7}{2}$(符合题意)
当m-1<0,即m<1时,x<m-2,
∴m-2≤-$\frac{3}{2}$,
解得m≤$\frac{1}{2}$(符合题意).
综上所述,m≤$\frac{1}{2}$或m≥$\frac{7}{2}$.

点评 本题主要考查了不等式的解集,解决问题的关键是利用绝对值的几何意义进行分类讨论.解题时注意:能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网