题目内容

9.在矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD的度数是120°.

分析 先由矩形的性质得出OA=OB,再证明AOB是等边三角形,得出∠AOB=60°,由邻补角关系即可求出结果.

解答 解:如图所示:
∵四边形ABCD是矩形,
∴OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
∵AC=2AB,
∴OA=OB=AB,
即△AOB是等边三角形,
∴∠AOB=60°,
∴∠AOD=180°-60°=120°;
故答案为:120°.

点评 本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网