题目内容

15.如图,某教学兴趣小组想测量某建筑物的高度,他们在A点测得屋顶C的仰角为30°,然后沿AD方向前进10米,到达B点,在B点测得屋顶C的仰角为60°,已知测量仪AE的高度为1米,请你根据他们的测量数据计算建筑物CF的高度(结果保留根号).

分析 首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

解答 解:∵∠CAD=30°,∠CBD=60°,
∴∠ACB=30°,
∴∠ACB=∠CAB,
∴BA=BC=10,
在Rt△CBD中,sin∠CBD=sin60°=$\frac{CD}{CB}$,
∴$\frac{\sqrt{3}}{2}$=$\frac{CD}{10}$,
解得:CD=5$\sqrt{3}$,
∴CF=CD+DF=CD+AE=5$\sqrt{3}$+1.
答:建筑物CF的高度为(5$\sqrt{3}$+1)m.

点评 此题考查了解直角三角形的应用,用到的知识点是三角形的外角、特殊角的三角函数值、等腰三角形的性质,要求学生能借助仰角构造直角三角形并解直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网