题目内容
6.分析 根据等底的三角形高的比等于面积比推理出△A1B1C的面积是△A1BC面积的2倍,则△A1B1B的面积是△A1BC面积的3倍…,以此类推,得出△A2B2C2的面积.
解答
解:连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,
因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,
因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,
设△ABC的面积是a,则△A1BC的面积是2a,
同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,
则△A1B1B的面积是6a,
同理△B1C1C和△A1C1A的面积都是6a,
△A1B1C1的面积是19a,
即△A1B1C1的面积是△ABC的面积的19倍,
同理△A2B2C2的面积是△A1B1C1的面积的19倍,
即△A1B1C1的面积是19,△A2B2C2的面积192,
依此类推,△AnBnCn的面积是Sn=19n.
故答案为:19n.
点评 考查了三角形的面积,正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.
练习册系列答案
相关题目
14.
如图,矩形ABCD的对角线AC=5,则( )
| A. | AB=5 | B. | BC=5 | C. | CD=5 | D. | BD=5 |