题目内容


如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.

 


4解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,

∵∠AMB=45°,

∴∠AOB=2∠AMB=90°,

∴△OAB为等腰直角三角形,

∴AB=OA=2

∵S四边形MANB=SMAB+SNAB

∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,

即M点运动到D点,N点运动到E点,

此时四边形MANB面积的最大值=S四边形DAEB=SDAB+SEAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4

故答案为:4

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网