题目内容

4.如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有②③.(请填写正确说法的番号)

分析 若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.

解答 解:∵当y1=y2时,即-x2+4x=2x时,
解得:x=0或x=2,
∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1
∴①错误;

∵抛物线y1=-x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;
∴当x<0时,根据函数图象可以得出x值越大,M值越大;
∴②正确;

∵抛物线y1=-x2+4x的最大值为4,故M大于4的x值不存在,
∴③正确;

∵如图:当0<x<2时,y1>y2
当M=2,2x=2,x=1;
x>2时,y2>y1
当M=2,-x2+4x=2,x1=2+$\sqrt{2}$,x2=2-$\sqrt{2}$(舍去),
∴使得M=2的x值是1或2+$\sqrt{2}$,
∴④错误;
∴正确的有②③两个.
故答案为②③.

点评 本题考查了二次函数与一次函数综合应用.注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网