题目内容

如图,已知在扇形OAB中,∠AOB=90°,半径OA=10,正方形FCDE的四个顶点分别在
AB
和半径OA、OB上,则CD的长为
 
考点:垂径定理,勾股定理,正方形的性质
专题:
分析:过点O作OH⊥CF于点H,交DE于点K,连接OF,由垂径定理可知CH=HF,因为四边形FCDE是正方形故OH⊥DE,DK=EK,所以△OEK是等腰直角三角形,OK=EK,设CD=x,则HK=x,HF=OK=EK=
x
2
,在Rt△OHF中根据勾股定理可得出x的值,进而得出结论.
解答:解:过点O作OH⊥CF于点H,交DE于点K,连接OF,
∵OH过圆心,
∴CH=HF,
∵四边形FCDE是正方形,
∴OH⊥DE,DK=EK,
∴△OEK是等腰直角三角形,OK=EK,
设CD=x,则HK=x,HF=OK=EK=
x
2

在Rt△OHF中,OH2+HF2=OF2,即(x+
x
2
2+(
x
2
2=102,解得x=2
10

即CD的长为2
10

故答案为:2
10
点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网