题目内容

4.已知x3-2x-4=0,求-2x3-x2+18x的值.

分析 根据x3-2x-4=0得到x3-2x2+2x2-4x+2x-4=0,提取公因式后得到(x2+2x+2)(x-2)=0,根据x2+2x+2=(x+1)2+1>0,得到x-2=0,从而求得x的值,代入代数式即可求值.

解答 解:∵x3-2x-4=0,
∴x3-2x2+2x2-4x+2x-4=0,
∴x2(x-2)+2x(x-2)+2(x-2)=0,
∴(x2+2x+2)(x-2)=0,
∵x2+2x+2=(x+1)2+1>0,
∴x-2=0,
∴x=2,
将x=2代入得原式=-2×23-22-18×2
=-16-4+36
=16.

点评 本题考查了因式分解的应用,将已知条件变形后提取公因式后利用非负数的性质即可求得x的值,代入即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网