题目内容

3.如图,在△ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠CBD=10°,则∠BAC的度数为40°.

分析 由翻折的性质可知∠BAC=∠DAC,∠ABC=∠ADC,∠CBD=∠CDB=10°,由等腰三角形的性质可知∠BAC=∠ABC,最后在△ABD依据三角形的内角和是180°列方程求解即可.

解答 解:设∠BAC=x.
∵AC=BC,
∴∠BAC=∠ABC=x.
由翻折的性质可知:∠BAC=∠DAC=x,∠ABC=∠ADC=x,∠CBD=∠CDB=10°.
∵在△ABD中由勾股定理可知:∠BAC+∠DAC+∠ABC+∠ADC+∠CBD+∠CDB=180°.
∴4x+20°=180°.
解得:x=40°.
故答案为:40.

点评 本题主要考查的是翻折变换、等腰三角形的性质、三角形的内角和定理的应用,依据翻折的性质和等腰三角形的性质得到∠BAC=∠DAC=∠ABC=∠ADC是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网