题目内容

9.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=70°.

分析 先根据题意得出ED是AB的垂直平分线,故可得出∠BAD=∠B.根据∠CAD:∠BAD=5:2可设∠CAD=5x,则∠BAD=∠B=2x,再由三角形内角和定理求出x的值,进而可得出结论.

解答 解:∵点E是AB的中点且ED⊥AB,
∴ED是AB的垂直平分线,
∴∠BAD=∠B.
∵∠CAD:∠BAD=5:2,
∴设∠CAD=5x,则∠BAD=∠B=2x,
∴5x+2x+2x=90°,
∴x=10°,
∴∠BAC=∠CAD+∠BAD=5x+2x=7x=70°.
故答案为:70°.

点评 本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网