题目内容
12.计算:(1)(-2x2)3•x2+(3x4)2;
(2)(-$\frac{1}{3}$)-1+(+8)0-22012×(-$\frac{1}{2}$)2011.
分析 (1)原式利用积的乘方与幂的乘方运算法则计算,合并即可得到结果;
(2)原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,最后一项逆用积的乘方运算法则变形,计算即可得到结果.
解答 解:(1)原式=-8x8+9x8=x8;
(2)原式=-3+1+2=0.
点评 此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
7.某批乒乓球的质量检验结果如下:
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于$\frac{1}{3}$,问至少取出了多少个黑球?
| 抽取的乒乓球数n | 200 | 500 | 1000 | 1500 | 2000 |
| 优等品频数m | 188 | 471 | 946 | 1426 | 1898 |
| 优等品频率$\frac{m}{n}$ | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于$\frac{1}{3}$,问至少取出了多少个黑球?