题目内容
对于课本复习题18的第14题“如图(1),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.(提示:取AB的中点G,连接EG.)”,小华在老师的启发下对题目进行了拓广探索,发现:当原题中的“中点E”改为“直线BC上任意一点(B、C两点除外)时”,结论AE=EF都能成立.现请你证明下面这种情况:
如图(2),四边形ABCD是正方形,点E为BC反向延长线上一点,∠AEF=90°,且EF交正方形外角的平分线CM所在直线于点F.求证:AE=EF.

如图(2),四边形ABCD是正方形,点E为BC反向延长线上一点,∠AEF=90°,且EF交正方形外角的平分线CM所在直线于点F.求证:AE=EF.
考点:全等三角形的判定与性质,正方形的性质
专题:探究型
分析:在AB延长线上截取BG=BE,连接EG.证得在△EAG和△FEC中,EAG=∠FEC,AG=CE,∠AGE=∠ECF,得出三角形全等,得出结论.
解答:证明:如图,

在AB延长线上截取BG=BE,连接EG.
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°.
又∵BG=BE,
∴AG=CE.
∵∠ABC=∠BCD=90°,BG=BE,CM为正方形外角平分线
∴∠AGE=∠ECF=45°
∵∠ABE=90°,∠AEF=90°
∴∠AEB+∠EAG=90°,∠AEB+∠FEC=90°
∴∠EAG=∠FEC
又AG=CE,∠AGE=∠ECF,
在△EAG和△FEC中,
,
∴△EAG≌△FEC(ASA),
∴AE=EF.
在AB延长线上截取BG=BE,连接EG.
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°.
又∵BG=BE,
∴AG=CE.
∵∠ABC=∠BCD=90°,BG=BE,CM为正方形外角平分线
∴∠AGE=∠ECF=45°
∵∠ABE=90°,∠AEF=90°
∴∠AEB+∠EAG=90°,∠AEB+∠FEC=90°
∴∠EAG=∠FEC
又AG=CE,∠AGE=∠ECF,
在△EAG和△FEC中,
|
∴△EAG≌△FEC(ASA),
∴AE=EF.
点评:此题考查正方形的性质,三角形全等的判定与性质,角平分线的性质等知识点,注意结合图形,灵活作出辅助线解决问题.
练习册系列答案
相关题目