题目内容

18.关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是(  )
A.m<2B.m>$\frac{5}{4}$且m≠2C.m≤2D.m≥$\frac{5}{4}$且m≠2

分析 因为关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,所以△=b2-4ac>0,从而可以列出关于m的不等式,求解即可,还要考虑二次项的系数不能为0.

解答 解:∵关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,
∴△=b2-4ac>0,即(2m+1)2-4×(m-2)2×1>0,
解这个不等式得,m>$\frac{5}{4}$,
又∵二次项系数是(m-2)2
∴m≠2,
故M得取值范围是m>$\frac{5}{4}$且m≠2.
故选:B.

点评 此题考查一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网