题目内容

4.如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.
(1)①填空:△ACE∽△ABF∽△BCD;
②求证:△CDE∽△CBA;
(2)求证:△FBD≌△EDC;
(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.

分析 (1)①根据等腰三角形的性质得到∠DBC=∠DCB,∠FBA=∠FAB,∠ACE=∠EAC,等量代换得到∠FAB=∠BCD=∠EAC,于是得到结论;②根据相似三角形的性质得到$\frac{CE}{CA}=\frac{CD}{CB}$,根据相似三角形的判定定理即可得到结论;
(2)根据相似三角形的性质得到∠EDC=∠FBD,∠FDB=∠ACB等量代换得到∠FDB=∠ACB,根据全等三角形的判定即可得到结论;
(3)根据全等三角形的性质得到FB=DE,DF=CE,等量代换得到FD=AE,FA=DE,推出四边形AFDE是平行四边形,连接AD,于是得到AD平分∠BAC,根据菱形的判定定理即可得到结论.

解答 解:(1)①∵DB=DC,
∴∠DBC=∠DCB,
∵FB=FA,EA=EC,
∴∠FBA=∠FAB,∠ACE=∠EAC,
∵∠FBA=∠DBC=∠ECA,
∴∠FAB=∠BCD=∠EAC,
∴△ACE∽△ABF∽△BCD;
故答案为:△ABF,△BCD;
②由①知,△ACE∽△BCD,
∴$\frac{CE}{CD}=\frac{CA}{CB}$,即$\frac{CE}{CA}=\frac{CD}{CB}$,
∵∠ECA=∠DCB,
∴∠ECD=∠ACB,
∴△CDE∽△CBA;

(2)∵△CDE∽△CBA,
∴∠ABC=∠EDC,
∵∠ABC=∠FBD,
∴∠EDC=∠FBD,
同理△BFD∽△BAC,
∴∠FDB=∠ACB,
∵∠ACB=∠ECD,
∴∠FDB=∠ACB,
在△FBD与△EDC中$\left\{\begin{array}{l}{∠FDB=∠ECD}\\{BD=CD}\\{∠FBD=∠EDC}\end{array}\right.$,
∴△FBD≌△EDC;

(3)四边形AFDE是菱形,
理由:∵△FBD≌△EDC,
∴FB=DE,DF=CE,
∵FB=FA,EA=EC,
∴FD=AE,FA=DE,
∴四边形AFDE是平行四边形,
连接AD,则AD平分∠BAC,
即∠BAD=∠CAD,
∵∠BAF=∠CAE,
∴∠DAF=∠DAE,
∵AF∥DE,
∴∠DAF=∠ADE,
∴∠EAD=∠ADE,
∴EA=ED,
∴?AFDE是菱形.

点评 本题考查了相似三角形的判定和性质,全等三角形的判断和性质,菱形的判定,平行四边形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网