题目内容
5.| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由于D、E、F分别是边AB,BC,CA的中点,易知DE、DF、EF都是△ABC的中位线,那么DE∥AC,DF∥BC,EF∥AB,根据平行四边形的定义,两两结合易证四边形EDFC是平行四边形;四边形EBDF是平行四边形;四边形ADEF是平行四边形.
解答 解:∵D、E、F分别是边AB,BC,CA的中点,
∴DE、DF、EF都是△ABC的中位线,
∴DE∥AC,DF∥BC,EF∥AB,
∴四边形EDFC是平行四边形,四边形EBDF是平行四边形,四边形ADEF是平行四边形.
故选B.
点评 本题考查了平行四边形的判定、三角形中位线定理,解题的关键是熟练掌握三角形中位线定理的内容.
练习册系列答案
相关题目
16.3的绝对值是( )
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |
10.下列各数中无理数是( )
| A. | $\sqrt{4}$ | B. | 3.14 | C. | -π | D. | $\frac{22}{7}$ |
17.计算(-2)2002+(-2)2001所得的正确结果是( )
| A. | 22001 | B. | -22001 | C. | 1 | D. | 2 |
16.下列计算中,正确的是( )
| A. | (-2)0=1 | B. | 2-1=-2 | C. | a3•a2=a6 | D. | (1-2a)2=1-4a2 |