题目内容

如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是(  )

A. 55° B. 45° C. 35° D. 65°

A 【解析】∵∠1=125°,DE∥BC,∴∠B=180°–125°=55°,∵AB=AC,∴∠C=∠B=55°,故选A.
练习册系列答案
相关题目

下列事件中,属于必然事件的是(  )

A. 打开电视,正在播放《新闻联播》 B. 抛掷一次硬币正面朝上

C. 袋中有3个红球,从中摸出一球是红球 D. 阴天一定下雨

C 【解析】试题解析:A.打开电视,正在播放《新闻联播》是随机事件,因为也可能播放其它内容; B.抛掷一次硬币正面朝上是随机事件,也可能反面朝上; C. 袋中有3个红球,从中摸出一球是红球,是必然事件,因为袋子中只有红球,无论怎么摸,只能摸出红球; D.阴天一定下雨是随机事件,也可能只阴天不下雨. 故选C.

如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F

(1)求b,c的值及D点的坐标;

(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;

(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.

(1)b=,c=2;D点坐标为(3,0).(2)点E在OC上运动时,四边形OEBF的面积不变;(3)当m=2﹣时S最小为0. 【解析】 试题分析:(1)把点A,B代入抛物线y=x2+bx+c求得b、c即可,y=0,建立方程求得点D; (2)四边形OEBF的面积不变,利用三角形全等证得结论即可; (3)用m分别表示出两个三角形的面积,求差探讨得出答案即可. 试题解析:(...

如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是( )

A. a=﹣1 B. a= C. a=1 D. a=1或a=﹣1

C 【解析】由图象得,此二次函数过原点(0,0), 把点(0,0)代入函数解析式得a2-1=0,解得a=±1; 又因为此二次函数的开口向上,所以a>0; 所以a=1. 故选C.

如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。

∠α=∠B,理由见解析 【解析】试题分析:根据已知条件易证△BFD≌△CDE,得出∠BFD=∠CDE,再由角之间的转化,进而可得出结论. 【解析过程】 试题解析: ∠α=∠B,理由为: 证明:∵AB=AC(已知), ∴∠B=∠C(等边对等角), 在△BDF和△CED中, ∴△BDF≌△CED(SAS), ∴∠BFD=∠CDE(全等三角形对应角相...

已知:如图,点C在线段AB上,以AC和BC为边在AB的同侧作正三角形△ACM和△BCN,连结AN、BM,分别交CM、CN于点P、Q.求证:PQ∥AB.

见解析 【解析】试题分析:首先证明△ACN≌△MCB可得∠ANC=∠MBC,再证明△PCN≌△QCB可得PC=QC,再有∠MCN=60°可得△PCQ是等边三角形,进而得到∠PQC=60°,可证明PQ∥AB. 试题解析:∵△ACM和△BCN都是正三角形, ∴∠ACM=∠BCN=60°,AC=CM,BC=CN. ∵点C在线段AB上, ∴∠ACM=∠BCN=∠MCN=60°...

如图,△ABC中,∠C=90°,CD⊥AB,CM平分AB,CE平分∠DCM,则∠ACE的度数是______.

45° 【解析】∵△ABC中,∠C=90°, ∴∠A+∠B=90°, ∵CD⊥AB, ∴∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠ACD=∠B, ∵CM平分AB, ∴AM=BM=CM, ∴∠BCM=∠B, ∴∠BCM=∠ACD, ∵CE平分∠DCM, ∴∠DCE=∠MCE, ∴∠ACD+∠DCE=∠BCM+∠M...

一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在(  )

A. 三角形内部 B. 三角形的一边上 C. 三角形外部 D. 三角形的某个顶点上

A 【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部. 故选:A.

已知抛物线y=ax2+bx+3的对称轴是直线x=1.

(1)求证:2a+b=0;

(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.

(1)见解析;(2)x=-2 【解析】试题分析:直接利用对称轴公式代入求出即可;根据(1)中所求,再将x=4代入方程求出a,b的值,进而解方程得出即可. 试题解析:(1)证明:∵对称轴是直线x=1=﹣,∴b=-2a ∴2a+b=0; (2)∵ax2+bx﹣8=0的一个根为4,∴16a+4b﹣8=0,∵b=﹣2a,∴16a﹣8a﹣8=0, 解得:a=1,则b=﹣2,∴a+bx...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网