题目内容

如图,∠AOB是直角,∠AOC=30°,ON是∠AOC的平分线,OM是∠BOC的平分线,求∠MON的度数.
考点:角的计算,角平分线的定义
专题:
分析:求出∠BOC,根据角平分线定义求出∠NOC和∠MOC,相减即可求出答案.
解答:解:∵∠AOB是直角,∠AOC=30°,
∴∠BOC=120°,
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠NOC=
1
2
∠AOC=15°,∠MOC=
1
2
∠BCO=60°,
∴∠MON=∠MOC-∠NOC=60°-15°=45°.
点评:本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠NOC和∠MOC的大小.
练习册系列答案
相关题目
定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用
.
S
表示,例如图1中,
.
S △ABC
=S△ABC,图2中,
.
S △ABC
=-S△ABC
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组(
.
S △PBC
.
S △PCA
.
S △PAB
)为点P关于△ABC的“面积坐标”,记作
.
P
(
.
S △PBC
.
S △PCA
.
S △PAB
)
,例如图3中,菱形ABCD的边长为2,∠ABC=60°,则
.
S △ABC
=
3
,点D关于△ABC的“面积坐标”
.
D
(
.
S △DBC
.
S △DCA
.
S △DAB
)
.
D
(
3
,-
3
3
)

在图3中,我们知道S△ABC=S△DBC+S△DAB-S△DCA,利用“有向面积”,我们也可以把上式表示为:
.
S △ABC
=
.
S △DBC
+
.
S △DAB
+
.
S △DCA

应用新知:
(1)如图4,正方形ABCD的边长为1,则
.
S △ABC
=
 
,点D关于△ABC的“面积坐标”是
 

探究发现:
(2)在平面直角坐标系xOy中,点A(0,2),B(-1,0).
①若点P是第二象限内任意一点(不在直线AB上),设点P关于△ABO的“面积坐标”为
.
P
(m,n,k),试探究m+n+k与
.
S △ABO
之间有怎样的数量关系,并说明理由;
②若点P(x,y)是第四象限内任意一点,请直接写出点P关于△ABO的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点C(1,0),D(0,1),点Q在抛物线y=x2+2x+4上,求当S△QAB+S△QCD的值最小时,点Q的横坐标.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网