题目内容
考点:解直角三角形的应用-仰角俯角问题
专题:
分析:由题意可先过点D作DM⊥EF,垂足为M,在Rt△EMD中,可求出EM,进而EF=EM+MF,再在Rt△CEF中,求出CE的长.
解答:
解:过点D作DM⊥EF,垂足为M,
由题意可知四边形ADMF为矩形,
∴DM=AF=6,MF=DA=1.5,
在Rt△EMD中,EM=DM•tan∠EDM=6tan37°,
∴EF=EM+MF,DM=AF=6tan37°,
∴EF=EM+MF=6tan37°+1.5.
∵AC=3,
∴CF=AF-AC=3,
在Rt△CEF中,CE=
≈6.7.
答:拉线CE的长为6.7米.
由题意可知四边形ADMF为矩形,
∴DM=AF=6,MF=DA=1.5,
在Rt△EMD中,EM=DM•tan∠EDM=6tan37°,
∴EF=EM+MF,DM=AF=6tan37°,
∴EF=EM+MF=6tan37°+1.5.
∵AC=3,
∴CF=AF-AC=3,
在Rt△CEF中,CE=
| CF2+EF2 |
答:拉线CE的长为6.7米.
点评:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关题目