题目内容

如图,MN∥BC,BD⊥DC,∠1=∠2=60°.
(1)AB与DE平行吗?请说明理由;
(2)若DC是∠NDE的平分线.
①试说明∠ABC=∠C;
②试说明BD是∠ABC的平分线.
考点:平行线的性质,垂线
专题:
分析:(1)首先根据平行线的性质,两直线平行,内错角相等即可证得∠ABC=∠1=60°,进而证明∠ABC=∠2,根据同位角相等,两直线平行,即可证得;
(2)①根据平行线的性质,两直线平行,同旁内角互补求得∠NDE的度数,然后根据角平分线的定义,以及平行线的性质即可求得∠C的度数,从而判断;
②在直角△BCD中,求得∠DBC的度数,然后求得∠ABD的度数,即可证得.
解答:解:(1)AB∥DE,理由如下:
∵MN∥BC,( 已知 )
∴∠ABC=∠1=60°.( 两直线平行,内错角相等  )
又∵∠1=∠2,( 已知 )
∴∠ABC=∠2.( 等量代换 )
∴AB∥DE.( 同位角相等,两直线平行 );
(2)①∵MN∥BC,
∴∠NDE+∠2=180°,
∴∠NDE=180°-∠2=180°-60°=120°.
∵DC是∠NDE的平分线,
∴∠EDC=∠NDC=
1
2
∠NDE=60°.
∵MN∥BC,
∴∠C=∠NDC=60°.
∴∠ABC=∠C.
②∠ADC=180°-∠NDC=180°-60°=120°,
∵BD⊥DC,
∴∠BDC=90°.
∴∠ADB=∠ADC-∠BDC=120°-90°=30°.
∵MN∥BC,
∴∠DBC=∠ADB=30°.
∴∠ABD=∠DBC=
1
2
∠ABC.
∴BD是∠ABC的平分线.
点评:本题考查了平行线的性质和判定定理,以及直角三角形的性质,直角三角形的两锐角互余,理解定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网