题目内容

17.如图,在?ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)连接MN,求证四边形MNCD是菱形.

分析 (1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由M、N分别是AD,BC的中点,即可利用SAS证得△ABN≌△CDM;
(2)利用直角三角形形的性质结合菱形的判定方法证明即可.

解答 解:
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠B=∠CDM,
∵M、N分别是AD,BC的中点,
∴BN=DM,
∵在△ABN和△CDM中,
$\left\{\begin{array}{l}{AB=CD}\\{∠B=∠CDM}\\{BN=DM}\end{array}\right.$,
∴△ABN≌△CDM(SAS);

(2)证明:
∵M是AD的中点,∠AND=90°,
∴NM=AM=MD,
∵BN=NC=AM=DM,
∴NC=MN=DM,
∵NC$\stackrel{∥}{=}$DM,
∴四边形CDMN是平行四边形,
又∵MN=DM,
∴四边形CDMN是菱形.

点评 此题主要考查了平行四边形的性质以及全等三角形的判定与性质、菱形的判定等知识,正确应用直角三角形的性质是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网