题目内容

如图正方形ABCD中,点E、F分别在BC、CD上,且∠EAF=45°.
(1)求证:BE+DF=EF;
(2)若BE=3,DF=2,求AB的长.

(1)证明:延长EB至H,使BH=DF,连接AH,
∵在正方形ABCD中,
∴∠ADF=∠ABH,AD=AB,
在△ADF和△ABH中,

∴△ADF≌△ABH(SAS),
∴∠BAH=∠DAF,AF=AH,
∴∠FAH=90°,
∴∠EAF=∠EAH=45°,
在△FAE和△HAE中,

∴△FAE≌△HAE(SAS),
∴EF=HE=BE+HB,
∴EF=BE+DF,

(2)解:∵EF=BE+DF,BE=3,DF=2,∴EF=5,
设AB=x,则CE=x-3,CF=x-2,
在△CEF中:FC2+EC2=EF2
故(x-2)2+( x-3)2=52
解得:x1=-1(舍去),x2=6,
∴AB=6.
分析:(1)延长EB至H,使BH=DF,连接AH,证△ADF≌△ABH,△FAE≌△HAE,根据全等三角形的性质得出EF=HE=BE+HB进而求出即可;
(2)根据全等三角形的性质及勾股定理即可求得正方形的边长.
点评:本题主要考查正方形的性质,全等三角形的判定以及勾股定理的综合应用.作出辅助线延长EB至H,使BH=DF,利用全等三角形性质与判定求出是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网