题目内容

如图已知二次函数图象的顶点为原点,直线y=
1
2
x+4的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.求这个二次函数的解析式与B点坐标.
考点:抛物线与x轴的交点
专题:
分析:由已知条件可设二次函数的解析式为y=ax2(a≠0),把A(8,8)代入即可求得a的值进而求得二次函数的解析式,根据直线的解析式令x=0,即可求得纵坐标,进而求得B的坐标.
解答:解:∵二次函数图象的顶点为原点,
∴设二次函数的解析式为y=ax2(a≠0),
把A(8,8)代入得:8=64a,
解得:a=
1
8

∴二次函数的解析式为y=
1
8
x2
∵直线y=
1
2
x+4与y轴的交点为B.
∴令x=0,则y=4,
∴B(0,4).
点评:本题考查了待定系数法求解析式以及直线与坐标轴的交点坐标,是基础题,难度小.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网