题目内容

8.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课时间的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分),请问:
如果有一道数学综合题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师可否在学生注意力达到较为理想的稳定状态下讲解完这道题目?
你的结论是可以(填写“可以”或“不可以”),
理由是
设线段AB所在的直线的解析式为y1=k1x+20,
把B(10,40)代入得,k1=2,
∴AB解析式为:y1=2x+20(0≤x≤10).
设C、D所在双曲线的解析式为y2=$\frac{{k}_{2}}{x}$,
把C(25,40)代入得,k2=1000,
∴曲线CD的解析式为:y2=$\frac{1000}{x}$(x≥25);
令y1=36,
∴36=2x+20,
∴x1=8
令y2=36,
∴36=$\frac{1000}{x}$,
∴x2=$\frac{1000}{36}$≈27.8,
∵27.8-8=19.8>19,
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.(请通过你计算所得的数据说明理由).

分析 先用待定系数法分别求出AB和CD的函数表达式,分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.

解答 解:可以.
理由:设线段AB所在的直线的解析式为y1=k1x+20,
把B(10,40)代入得,k1=2,
∴AB解析式为:y1=2x+20(0≤x≤10).
设C、D所在双曲线的解析式为y2=$\frac{{k}_{2}}{x}$,
把C(25,40)代入得,k2=1000,
∴曲线CD的解析式为:y2=$\frac{1000}{x}$(x≥25);
令y1=36,
∴36=2x+20,
∴x1=8
令y2=36,
∴36=$\frac{1000}{x}$,
∴x2=$\frac{1000}{36}$≈27.8,
∵27.8-8=19.8>19,
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.

点评 此题主要考查了函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网