题目内容
8.(1)求证:△ABF≌△CBE;
(2)填空:用等式表示线段FA、FE、FC之间的数量关系为FE2=FA2+FC2.
分析 (1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;
(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形,再根据勾股定理即可证明;
解答 (1)证明:∵四边形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,![]()
∴∠ABC-∠CBF=∠EBF-∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,
$\left\{\begin{array}{l}{AB=CB}\\{∠ABF=∠CBE}\\{BF=BE}\end{array}\right.$,
∴△ABF≌△CBE(SAS).
(2)解:结论:FE2=FA2+FC2.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°-∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB-∠FEB=135°-45°=90°,
∴△CEF是直角三角形,
∵FE2=FC2+EC2,
∵△ABF≌△CBE,
∴AF=EC,
∴FE2=FA2+FC2.
故答案为FE2=FA2+FC2.
点评 本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.
| A. | 1 | B. | -1 | C. | 4 | D. | $-\frac{1}{4}$ |
| A. | x>-3 | B. | x<-3 | C. | x>2 | D. | x<2 |
| A. | B. | C. | D. |