ÌâÄ¿ÄÚÈÝ
Èçͼ£¬µÈÑüÌÝÐÎABCDµÄµ×±ßABÔÚxÖáÉÏ£¬ÇÒµãAÓëÔµãOÖØºÏ£¬µãB×ø±êΪ£¨8
£¬0£©£¬µãD×ø±êΪ£¨3
£¬3
£©£¬µãEΪAB±ßÉÏÒ»¶¯µã£¬ÒÔÿÃë
¸öµ¥Î»µÄËÙ¶ÈÓÉAÏòBÔ˶¯£¬Ô˶¯Ê±¼äΪt£¬½«ÉäÏßEDÈÆEµã˳ʱÕëÐýת45¡ã½»BCÓÚFµã£®

£¨1£©Çó¾¹ýA¡¢C¡¢DÈýµãµÄÅ×ÎïÏߣ»
£¨2£©Çó³öÏß¶ÎBFµÄ×î´óÖµ£»
£¨3£©Èô¡÷ADEΪµÈÑüÈý½ÇÐΣ¬ÇótÖµ£»
£¨4£©ÔÚÖ±ÏßBCÉÏȡһµãP£¬ÇóDE+EPµÄ×îСֵ£®
| 2 |
| 2 |
| 2 |
| 2 |
£¨1£©Çó¾¹ýA¡¢C¡¢DÈýµãµÄÅ×ÎïÏߣ»
£¨2£©Çó³öÏß¶ÎBFµÄ×î´óÖµ£»
£¨3£©Èô¡÷ADEΪµÈÑüÈý½ÇÐΣ¬ÇótÖµ£»
£¨4£©ÔÚÖ±ÏßBCÉÏȡһµãP£¬ÇóDE+EPµÄ×îСֵ£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¹ýD×÷DD¡ä¡ÍABÓÚD¡ä£¬¹ýC×÷CC¡ä¡ÍABÓÚC¡ä£¬¿ÉµÃCµã×ø±êΪ£¨5
£¬0£©£¬ÔËÓôý¶¨ÏµÊý·¨ÇóµÃ¹ýA¡¢C¡¢DÈýµãµÄÅ×ÎïÏߣ»
£¨2£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÅж¨¿ÉµÃ¡÷ADE¡×¡÷BEF£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃ
=
£¬ÉèBF=y£¬¿ÉµÃy=-
(t-4)2+
£¬´Ó¶øµÃµ½Ïß¶ÎBFµÄ×î´óÖµ£»
£¨3£©·ÖÈýÖÖÇé¿ö£º¢Ùµ±ED=EAʱ£¨ÈçµãE1£©£»¢Úµ±AD=AEʱ£¨ÈçµãE2£©£»¢Ûµ±DA=DEʱ£¨ÈçµãE3£©£»ÌÖÂۿɵá÷ADEÊǵÈÑüÈý½ÇÐÎʱtµÄÖµ£»
£¨4£©×÷µãD¹ØÓÚxÖáµÄ¶Ô³ÆµãD¡ä£¬¹ýD¡ä×÷D¡äP¡ÍCBÓÚP£¬Á¬½ÓD¡äP½»OBÓÚµãE£¬ÓÉÖá¶Ô³ÆÖªDE+EP=D¡äE+EP=D¡äP£¬ÓÉ´¹Ïß¶Î×î¶ÌÖª´ËʱD¡äP×î¶Ì£¬ÔòDE+EPÒ²×îС£®
| 2 |
£¨2£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÅж¨¿ÉµÃ¡÷ADE¡×¡÷BEF£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃ
| AD |
| BE |
| AE |
| BF |
| 1 |
| 3 |
| 16 |
| 3 |
£¨3£©·ÖÈýÖÖÇé¿ö£º¢Ùµ±ED=EAʱ£¨ÈçµãE1£©£»¢Úµ±AD=AEʱ£¨ÈçµãE2£©£»¢Ûµ±DA=DEʱ£¨ÈçµãE3£©£»ÌÖÂۿɵá÷ADEÊǵÈÑüÈý½ÇÐÎʱtµÄÖµ£»
£¨4£©×÷µãD¹ØÓÚxÖáµÄ¶Ô³ÆµãD¡ä£¬¹ýD¡ä×÷D¡äP¡ÍCBÓÚP£¬Á¬½ÓD¡äP½»OBÓÚµãE£¬ÓÉÖá¶Ô³ÆÖªDE+EP=D¡äE+EP=D¡äP£¬ÓÉ´¹Ïß¶Î×î¶ÌÖª´ËʱD¡äP×î¶Ì£¬ÔòDE+EPÒ²×îС£®
½â´ð£º
½â£º£¨1£©Èçͼ1£¬¹ýD×÷DD¡ä¡ÍABÓÚD¡ä£¬¹ýC×÷CC¡ä¡ÍABÓÚC¡ä£¬
¿ÉÇóµÃBC¡ä=OD¡ä=3
£¬CC¡ä=DD¡ä=3
£¬D¡äC¡ä=DC=2
£¬
ÔòCµã×ø±êΪ£¨5
£¬0£©£¬
ÔËÓôý¶¨ÏµÊý·¨ÇóµÃ¹ýA¡¢C¡¢DÈýµãµÄÅ×ÎïÏßΪy=-
x2+
x
£¨2£©Èçͼ2£¬¼ÆËãÖª¡ÏCBA=¡ÏDAB=¡ÏDEF=45¡ã£¬¡Ï1+¡Ï2=135¡ã£¬¡Ï2+¡Ï3=135¡ã£¬
ËùÒÔ¡Ï1=¡Ï3£¬¡÷ADE¡×¡÷BEF£¬
Ôò
=
£¬
ÉèBF=y£¬¼´ÓÐ
=
£¬
»¯¼òµÃ£ºy=-
t2+
t£¬
Åä·½µÃy=-
(t-4)2+
£¬
µ±t=4ʱ£¬yÓÐ×î´óÖµÇÒΪ
£¬¼´BF×î´óΪ
£¨3£©Èçͼ3ÓÉÉÏͼ¼ÆËãÖªAD=
AD¡ä=6£¬¡ÏBAD=45¡ã£»
¢Ùµ±ED=EAʱ£¨ÈçµãE1£©£¬Ôò¡ÏE1AD=¡ÏE1DA=45¡ã£¬DE1¡ÍAB£¬ÔòE1ÓëÉÏͼÖеÄD¡äÖØºÏ£¬¹ÊOE1=3
£¬t=3
¡Â
=3£»
¢Úµ±AD=AEʱ£¨ÈçµãE2£©£¬ÔòAE2=AD=6£¬t=6¡Â
=3
£»
¢Ûµ±DA=DEʱ£¨ÈçµãE3£©£¬ÓÉ¡°ÈýÏߺÏÒ»¡±µÃAE3=2AE1=6
¡Â
=6
×ÛÉÏËùÊö£¬µ±t=3£¬3
£¬6ʱ£¬¡÷ADEÊǵÈÑüÈý½ÇÐΣ®
£¨4£©Èçͼ4£¬×÷µãD¹ØÓÚxÖáµÄ¶Ô³ÆµãD¡ä£¬¹ýD¡ä×÷D¡äP¡ÍCBÓÚP£¬Á¬½ÓD¡äP½»OBÓÚµãE£¬
ÓÉÖá¶Ô³ÆÖªDE+EP=D¡äE+EP=D¡äP£¬
ÓÉ´¹Ïß¶Î×î¶ÌÖª´ËʱD¡äP×î¶Ì£¬ÔòDE+EPÒ²×îС£®
ÓÉ¡ÏCBO=45¡ã£¬¿ÉÍÆµ¼D¡äE=
D¡äF=
DF=
•3
=6£¬BE=BF-FG=2
£¬EP=
=2£¬
ËùÒÔD¡äP=8£¬¼´DE+EP×îСֵΪ8£®
¿ÉÇóµÃBC¡ä=OD¡ä=3
| 2 |
| 2 |
| 2 |
ÔòCµã×ø±êΪ£¨5
| 2 |
ÔËÓôý¶¨ÏµÊý·¨ÇóµÃ¹ýA¡¢C¡¢DÈýµãµÄÅ×ÎïÏßΪy=-
| ||
| 10 |
| 8 |
| 5 |
£¨2£©Èçͼ2£¬¼ÆËãÖª¡ÏCBA=¡ÏDAB=¡ÏDEF=45¡ã£¬¡Ï1+¡Ï2=135¡ã£¬¡Ï2+¡Ï3=135¡ã£¬
ËùÒÔ¡Ï1=¡Ï3£¬¡÷ADE¡×¡÷BEF£¬
Ôò
| AD |
| BE |
| AE |
| BF |
ÉèBF=y£¬¼´ÓÐ
| 6 | ||||
8
|
| ||
| y |
»¯¼òµÃ£ºy=-
| 1 |
| 3 |
| 8 |
| 3 |
Åä·½µÃy=-
| 1 |
| 3 |
| 16 |
| 3 |
µ±t=4ʱ£¬yÓÐ×î´óÖµÇÒΪ
| 16 |
| 3 |
| 16 |
| 3 |
| 2 |
¢Ùµ±ED=EAʱ£¨ÈçµãE1£©£¬Ôò¡ÏE1AD=¡ÏE1DA=45¡ã£¬DE1¡ÍAB£¬ÔòE1ÓëÉÏͼÖеÄD¡äÖØºÏ£¬¹ÊOE1=3
| 2 |
| 2 |
| 2 |
¢Úµ±AD=AEʱ£¨ÈçµãE2£©£¬ÔòAE2=AD=6£¬t=6¡Â
| 2 |
| 2 |
¢Ûµ±DA=DEʱ£¨ÈçµãE3£©£¬ÓÉ¡°ÈýÏߺÏÒ»¡±µÃAE3=2AE1=6
| 2 |
| 2 |
×ÛÉÏËùÊö£¬µ±t=3£¬3
| 2 |
£¨4£©Èçͼ4£¬×÷µãD¹ØÓÚxÖáµÄ¶Ô³ÆµãD¡ä£¬¹ýD¡ä×÷D¡äP¡ÍCBÓÚP£¬Á¬½ÓD¡äP½»OBÓÚµãE£¬
ÓÉÖá¶Ô³ÆÖªDE+EP=D¡äE+EP=D¡äP£¬
ÓÉ´¹Ïß¶Î×î¶ÌÖª´ËʱD¡äP×î¶Ì£¬ÔòDE+EPÒ²×îС£®
ÓÉ¡ÏCBO=45¡ã£¬¿ÉÍÆµ¼D¡äE=
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| BE | ||
|
ËùÒÔD¡äP=8£¬¼´DE+EP×îСֵΪ8£®
µãÆÀ£º¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°µÄ֪ʶµãÓУº´ý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ£¬ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬×îÖµÎÊÌ⣬µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬·ÖÀà˼Ï룬ÓÉÖá¶Ô³ÆµÄÐÔÖÊ£¬´¹Ïß¶Î×î¶Ì£¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¹ØÓÚx£¬yµÄ·½³Ì×é
µÄ½âÊÇ
£¬Ôò|m+n|µÄÖµÊÇ£¨¡¡¡¡£©
|
|
| A¡¢9 | B¡¢5 | C¡¢4 | D¡¢1 |