题目内容
15.| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 设A(a,b),B(-a,d),代入双曲线得到k1=ab,k2=-ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.
解答
解:作AC⊥x轴于C,BD⊥x轴于D,
∴AC∥BD∥y轴,
∵M是AB的中点,
∴OC=OD,
设A(a,b),B(-a,d),
代入得:k1=ab,k2=-ad,
∵S△AOB=2,
∴$\frac{1}{2}$(b+d)•2a-$\frac{1}{2}$ab-$\frac{1}{2}$ad=2,
∴ab+ad=4,
∴k1-k2=4,
故选C.
点评 本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=4是解此题的关键.
练习册系列答案
相关题目
5.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
20.下列各数中,最小的数是( )
| A. | -$\sqrt{5}$ | B. | -(-3) | C. | |-2| | D. | -π |