题目内容

如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=
 
考点:角平分线的性质
专题:
分析:根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC+∠OCB,然后利用三角形的内角和定理列式计算即可得解.
解答:解:∵点O在△ABC内,且到三边的距离相等,
∴点O是三个角的平分线的交点,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=
1
2
(180°-60°)=60°,
在△BCO中,∠BOC=180°-(∠OBC+∠OCB)=180°-60°=120°.
故答案为:120°.
点评:本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O是三个角的平分线的交点是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网