题目内容

4.化简:$\sqrt{y+2+3\sqrt{2y-5}}$-$\sqrt{y-2+\sqrt{2y-5}}$=$\sqrt{2}$.

分析 先将原式化为完全平方的形式,再开方化简即可解答本题.

解答 解:$\sqrt{y+2+3\sqrt{2y-5}}$-$\sqrt{y-2+\sqrt{2y-5}}$
=$\sqrt{(\sqrt{y-\frac{5}{2}})^{2}+2×\frac{3\sqrt{2}\sqrt{y-\frac{5}{2}}}{2}+(\frac{3\sqrt{2}}{2})^{2}}-$$\sqrt{(\sqrt{y-\frac{5}{2}})^{2}+2×\frac{\sqrt{2}\sqrt{y-\frac{5}{2}}}{2}+(\frac{\sqrt{2}}{2})^{2}}$
=$\sqrt{(\sqrt{y-\frac{5}{2}}+\frac{3\sqrt{2}}{2})^{2}}-\sqrt{(\sqrt{y-\frac{5}{2}}+\frac{\sqrt{2}}{2})^{2}}$
=$\sqrt{y-\frac{5}{2}}+\frac{3\sqrt{2}}{2}-(\sqrt{y-\frac{5}{2}}+\frac{\sqrt{2}}{2})$
=$\sqrt{y-\frac{5}{2}}+\frac{3\sqrt{2}}{2}-\sqrt{y-\frac{5}{2}}-\frac{\sqrt{2}}{2}$
=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查二次根式的化简求值,解题的关键是能观察出原式能先将根号内的式子化为完全平方的形式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网